CHEM.5340 Quantum Chemistry
Id: 040284
Credits: 3-3
Description
This course will start with the basics of Quantum Mechanics and Quantum Chemistry followed by use of the molecular modeling software GAUSSIAN. Topics to be covered include: Schrodinger equation and wave functions; Particle in a box; Particle in a ring; Heisenberg uncertainty principle; QM operators, Eigenvalue problem; Eigenvectors & eigenvalues; Hermitian operators and commutators; Harmonic oscillator & IR spectroscopy; Rigid Rotator & Rotational Spectroscopy; H-atom, H2+ion; using Mathematics to solve QM problems (e.g. atomic/molecular orbitals visualization), He-atom and variational method; Electron spin and Pauli exclusion principle; EPR/NMR; Semiempirical methods; Many-electron systems; Slater Determinants, Hartree and Hartree-Fock methods; Diatomic molecules; Born-Oppenheimer approx.
View Current Offerings
Course prerequisites/corequisites are determined by the faculty and approved by the curriculum committees. Students are required to fulfill these requirements prior to enrollment. For courses offered through online or GPS delivery, students are responsible for confirming with the instructor or department that all enrollment requirements have been satisfied before registering.